Ten Years of Interconnection and Damping Assignment
Passivity—based Control of Mechanical Systems

Romeo Ortega
Laboratoire des Signaux et Systemes, CNRS—Supelec

France

Starting Point:
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1. IDA—PBC of Mechanical Systems

® Model

where H(q,p) = %pTM_l(q)p + V(g), rank (G) = m < n.

® Desired closed—loop dynamics

_ 0 M~ (q)Ma(q) 2o
p ~My(@)M~ (q)  J2(q,p) = G@K.GT(q) | | %52
with K, > 0 and J2(q,p) = —JQT (q,p).

® Desired energy is parameterized

$ Hy(g,p)=3p" M, (q)p+ Valq), Ma(q) = M] (q) > 0
® ¢, = argminV;(q).

® Connection with Controlled Lagrangians: Gyroscopic terms had to be added

1

Lec(q,q) = EQTM(Q)Md_l(Q)M(Q)d +4' Qq) — Valq)
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Proposition

Let (without loss of generality)
1 < T
J2(q,p) = 5 > Ui(@)pk, Uk = —Uy, .

Assume solution of the PDEs

GL{Q(M—1 ) — M M‘li(]\/l_l) + UMY = 0
dq = (k) d dq = A (+,k) kg =
av av,
GH{Z— —M;M T4}y = 0
0q 0q

with (+)(. ) the k—th row, G (q) € R("=™) X" a full rank left annihilator of G, i.e., GG =0
and rank(G+) = n — m. Then, the system in closed—loop with

u=(G'G)'G" (V¢H — MyM ™'V Hy+ JoM; 'p) — K,G' V,Hy,

takes the desired port—Hamiltonian form and (¢*, 0) is a stable equilibrium point with
Lyapunov function H .

Spongfest, UTDallas, 6 November, 2012 — p. 4/1



2. Constructive Solution For Underactuation Degree One

® [dentification of a class of mechanical systems for which the PDEs are explicitly solved.

Proposition
® Alm=n-—-1.

® A2 M and V do not depend on the unactuated coordinate. The former can be
enforced with Spong’s partial feedback linearization.

$ A3 G and M are functions of a single element of ¢, say ¢, » € {1,...,n}

An explicit solution of the PDE’s is given by

Ma(g) = [ G ()G (u)dps+ M

a7

e Gy
W@—L ot 0 (x(a),

where

vi= M Mg(GH)' 2(q) =g — /qr ) dp

o r(p)
and & = W', MY = (Mg)T > 0 and & may be arbitrarily chosen.
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3. Simplifying the PDEs via Coordinate Changes

® The KE-PDE is nonlinear and nonhomogeneous. The presence of the forcing term

introduces a quadratic term in M, that renders very difficult its solution—even with the
help of the free skew—symmetric matrix Js.

Perform a coordinate change (¢, p) < (g, p), with p = T'(q)p, where T' € R™*™ is full
rank. This yields:

- g 0 T-T V.H 0
> ] = 5 + u,
p -7t —r=ls-shHr-T VsH TG

where H(q,p) = 55" T ()M~ (9)T(q)p + V (q), and 5(q,p) = V¢(T(q)P)-

® Define new target dynamics, in the coordinates (q, p), as

. 4] = 0 M~1(q)T(q) Mqa(q)
p —MaTT (q)(q)M~(q) T2(q,5)

VsHy |

where Hy(q,p) = 35T M " (q)p + Va(q) and Jo = —J; is free.
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Obtaining an Homogeneous KE-PDE

Proposition T is such that

n T V-1
d |TT M eGy or + or (eiGl)TM—1T+GleiTT8 T| =o0.
k k k
dq;  9q; 9q;

/L:

The PDEs become

GLT [MdTTM_lvq(ﬁTj\Zfd_lp”)—QJQMd_lﬁ] - 0
GrTM;T'M~'VV, = G*+VV,

Remarks

® T = M solves the new PDE if and only if G+ (q)C(q, ¢)¢ = 0, where C € R™*™ is the
matrix of Coriolis and centrifugal forces of the system.

® Solving the new PDEs is, in principle, simpler: it has been possible for several practical
examples, including the pendulum of Furuta [

® For the Acrobot [ first proof of smooth stabilization with domain of attraction including
the lower half plane.
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Relationship Between New and Original Problem

U (¢;p)
(4, p) E; g Zd{Md,vd,JQ}
& L e
'N
(@.5) Y - g Zd {Md,vd,Jg

T':{My,Vy, Jo} — {Mg,Vy, J2} is one—to—one.
® : (q,p) — (q,p) is the coordinate transformation.
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4. Robustness to External Disturbances

® Perturbed port—Hamiltonian (pH) model

I
<
T
+
S
+

with Hamiltonian

H(q,p) = %pTM_l(Q)p +V(q)-

d1, d2 are disturbances—possibly time—varying, but bounded.

K, >0,q" =argminV(q) = Asymptotic stabilityifd =0 .

L I I

Objective: Design a state—feedback controller that:
® preserves asymptotic stability for constant disturbances,
® ensures input—to—state stability (ISS).

® Main technical tools (Donaire/Junco, Automatica’09), (Ortega/Romero, SCL'10):
® Change of coordinates (preserving pH structure and Hamiltonian function form)
® Addition of integral action
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Destabilization of Integral Action on Velocities

® Integral control on passive output

U = -

n = K;M '(q)p, K;>0

® If d; is a non—zero constant the system admits no constant equilibrium, and if d; = 0
and ds is constant there is an equilibrium set

e={(a.p.m)p=0,VV(g) +n=ds}.
® \ith or without disturbances, the foliation

MK', — {(Q7p777)|K’Lq_T] =K, kK & R})

IS iInvariant.

® Convergence to (¢*, 0, d2) is attained only for a zero measure set of initial conditions.
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Invariant Foliation in the State Space

pm
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Robustness for Constant Inertia Matrix and d(t) = d

Proposition (Romero, et al., CDC’12) Constant inertia matrix M and disturbances d = d
with Pl control

u = —Kpzz— MK;VV
23 = K;VV.

() The closed—loop dynamics expressed in the coordinates,
21=q, z2=p+M(z3s— K, 'da)

takes the pH form

0 I, —K;
z = —I, —Kp 0 VH,(z),
i K; 0 0 |

with
L 1 w1 p—1 Lk
H,(z):=H(z)+ 5(23 z3) K, (23 — 23).
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Non—constant M(q): Change of Coordinates

Fact (Venkatraman, et al., TAC'10) Consider the system without damping (K, = 0) and no
unmatched disturbances (d; = 0). The change of coordinates

(¢,D) = (¢, T(q)p), M~ *(q) =T>(q).

0 0
v+ ,
In] [ng]

1
Wi(a.p) = 5 l6l* + V(a)

transforms the dynamics into

q | _ 0 T(q) U+
p ~T(q) J2(q,D)

with v := T'(q)u, new Hamiltonian function

and the gyroscopic forces matrix

J2(q,p) =V ' (Tp)T — TV(TP)| 15

Spongfest, UTDallas, 6 November, 2012 — p. 13/1



Robustness vis—a—Vvis d(t)

Proposition (Romero, et al., WLHM’12) Control law

v = —(V?°VT+Ja+ Ra+ R3)p— (R2+ R3)z3 — (T + R2 + R3)VV
z3 = (T—i— R3)VV—|—R3]3

(i) Closed-loop dynamics in the coordinates (z1, 22, 23) = (¢, p + VV(q) + 23, 23), iS

given by
[ _T T —T | 0
1 1
i = T _Ry —Rs |VU+| Tdy |, U(z):= §|:<72|2 + V(1) + §If<73|2
T R; —Rj 0|

(i) The closed—loop system is ISS (with respect to the disturbance dz(t)).

(iii) If d2(t) = d2, the equilibrium 2* = (¢*, 0, 2%) is asymptotically stable.

Remark Similar result for (dy(t), d2(t)), with complex control.
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5. Globally Exponentially Stable Output Feedback Tracking

Proposition For all twice differentiable, bounded, references (q4(t), p4(t)) € R™ x R”,
there exists a dynamic position—feedback IDA—PBC that ensures uniform global exponential
stability of the closed—loop system provided the inertia matrix is bounded from above. More
precisely, there exist two (smooth) mappings

F R X R™ x Ryg — R H: R X R™ x Ry — R”
such that the mechanical system in closed—loop with
x=F0uqt), u=H(x,q,1t)

Is a (perturbed) port—Hamiltonian system that verifies

q(t) — qq(t) i q(to) — qa(to)
p(t) - pd(t) < K'exp_a(t_t()) p(to) — pd(to) , Vt > tp.
! x () ] ! x (o)

for all initial conditions (g(t0), p(t0), x(t0)) € R™ x R™ x R3"™ x R>(. Moreover, the
controller ensures uniform global asymptotic stability even if the inertia matrix is not bounded
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6. Linear Time Invariant (Conservative) Mechanical Systems

® DA for LTI systems: Find u(z) such that
&t = Ax + Bu(x) = FVHy

with Hq(z) = 22" Pz, P>0and F + F T <0.
Proposition (Prajna, et al., SCL'02) IDA applicable if and only if (A, B) is stabilizable.

L I

IDA for mechanical systems: Given H(q,p) = 3|p|?> + 3¢ ' Cq find u(q, p) such that

B A L B R B
p —1Iy 0 G — My, 0

where Hq(q,p) = 3p" M 'p+ 1q"Caq, My >0,Cyq > 0.
Differences with general IDA is that H, is separable and the structure of F' is fixed.

Proposition (Liu, et al., 13C'12), (Zenkov, MTNS’02), (Chang, SIAM/JOTA’10)

® |DA is applicable if and only if the matrix associated to the uncontrollable part of
the pair (—C, G)—if any—is diagonalizable and has negative real eigenvalues.

L I

$ Stabilizability is not enough for applicability of IDA.

Spongfest, UTDallas, 6 November, 2012 — p. 16/1



Thanks a lot Mark!
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